The weighted σk-curvature of a smooth metric measure space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature based triangulation of metric measure spaces

We prove that a Ricci curvature based method of triangulation of compact Riemannian manifolds, due to Grove and Petersen, extends to the context of weighted Riemannian manifolds and more general metric measure spaces. In both cases the role of the lower bound on Ricci curvature is replaced by the curvature-dimension condition CD(K,N). We show also that for weighted Riemannian manifolds the tria...

متن کامل

Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

Approximating Coarse Ricci Curvature on Metric Measure Spaces with Applications to Submanifolds of Euclidean Space

For a submanifold Σ ⊂ R Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. More generally, on any metric measure we are able to approximate a 1-parameter family of coarse Ricci functions that include ...

متن کامل

σk-SCALAR CURVATURE AND EIGENVALUES OF THE DIRAC OPERATOR

On a 4-dimensional closed spin manifold (M, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows λ 4 ≥ 32 3 R M4 σ2(g)dvol(g) vol(M, g) . Equality implies that (M, g) is a round sphere and the corresponding eigenspinors are Killing spinors. Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday

متن کامل

The Wijsman structure of a quantale-valued metric space

We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2019

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.2019.299.339