The weighted σk-curvature of a smooth metric measure space
نویسندگان
چکیده
منابع مشابه
Curvature based triangulation of metric measure spaces
We prove that a Ricci curvature based method of triangulation of compact Riemannian manifolds, due to Grove and Petersen, extends to the context of weighted Riemannian manifolds and more general metric measure spaces. In both cases the role of the lower bound on Ricci curvature is replaced by the curvature-dimension condition CD(K,N). We show also that for weighted Riemannian manifolds the tria...
متن کاملMetric and Curvature in Gravitational Phase Space
At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...
متن کاملApproximating Coarse Ricci Curvature on Metric Measure Spaces with Applications to Submanifolds of Euclidean Space
For a submanifold Σ ⊂ R Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. More generally, on any metric measure we are able to approximate a 1-parameter family of coarse Ricci functions that include ...
متن کاملσk-SCALAR CURVATURE AND EIGENVALUES OF THE DIRAC OPERATOR
On a 4-dimensional closed spin manifold (M, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows λ 4 ≥ 32 3 R M4 σ2(g)dvol(g) vol(M, g) . Equality implies that (M, g) is a round sphere and the corresponding eigenspinors are Killing spinors. Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday
متن کاملThe Wijsman structure of a quantale-valued metric space
We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2019
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2019.299.339